@ RADEON R(Z;N AMDA\

OPTIMIZING FOR THE
RADEON™ RDNA
ARCHITECTURE

LOU KRAMER
DEVELOPER TECHNOLOGY ENGINEER, AMD

AMDZ1

GPUOpen

WHO AM 1?

Lou Kramer

Developer Technology Engineer
at AMD since Nov. 2017

| work closely with game studios to make their
games look amazing and run fast on AMD GPUs ©

AMDZ

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 2

WHY THIS TALK?

On July 7th 2019, we released a new GPU architecture with our Radeon™ RX 5700 cards!
Radeon™ New Architecture (RDNA)

Today, we have several products based
on RDNA

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 3

WHY THIS TALK?

RDNA is present in a bunch of different products

Design goals of RDNA
Scalability

Special focus on
Geometry handling
Cache flushes
Amount of work in flight needed
Latency

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 4

AGENDA

Architecture
Compute Unit (CU) «=» Work Group Processor (WGP)
GCN <= RDNA
Highlights of changes

Optimizations
Texture access
Workload distribution
Shader optimizations

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 5

COMPUTE UNIT (CU)

SIMD16 SIMD16 SIMD16 SIMD16 SALU
LDS Texture L1$
1$ VGPR VGPR VGPR VGPR SGPR 64KB Units 16KB
32KB 64KB 64KB 64KB 64KB
K$ CuU

16KB
CuU

CuU

A GCN based GPU has several Compute Units - a CU has:

4 SIMD16 + VGPRs This is where the shaders get
1 Scalar ALU + SGPRs executed!

1 L1 Cache

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 6

COMPUTE UNIT (CU)

1$
32KB

K$
16KB

4 CUs share 1 Instruction and Constant Cache

AMDZ

SIMD16 SIMD16 SIMD16 SIMD16 SALU

LDS Texture L1$
VGPR VGPR VGPR VGPR SGPR 64KB Units 16KB
64KB 64KB 64KB 64KB
U

C

CuU

CuU

This is where the shaders get
executed!

GPUOpen

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 7

COMPUTE UNIT (CU)
os || Texure || L1s

1S VGPR VGPR VGPR VGPR <GPR 64KB Units || 16KB
32KB 64KB 64KB 64KB 64KB

K$

16KB

v add £32 v0, vi, v2 [0 |1 |2 [3 |4 |5 [6 |7 |8 [9 [10]|11[1213]| 14|15

Each SIMD16 executes wavefronts of size 64 16 17 [18 |19 20 [2a| 22|28 |2a| 2526|2728 2| 20]a
In Lockstep -> 4 cycle instruction 52 | a5 |4 | a5 | 36 | a7 |8 | a0 | 40 | a1 | a2 | 43 | 4a | 45 | 6 | a7
4x SIMD16 = 64 threads © wla|wlale|s]=]s]s]o]s]=ola]e]e
v omov b3z s, va |0 |2 2 [2 45 |6 7 [e o |o]w]e|e]u]s

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 8

CU «= WORK GROUP PROCESSOR (WGP)

SIMD16 SIMD16 SIMD16 SIMD16 SALU
LDS Texture L1$
1$ VGPR VGPR VGPR VGPR SGPR 64KB Units 16KB
32KB 64KB 64KB 64KB 64KB
K$ CuU
16KB
CuU
CuU

SIMD32 SALU SALU SIMD32 Texture

SIMD32 SALU SALU SIMD32 Texture
Units
VGPR 128KB SGPR IS K$ SGPR VGPR 128KB
32KB § 16KB

VGPR 128KB SGPR SGPR VGPR 128KB Units

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 9

CU «= WORK GROUP PROCESSOR (WGP)

A RDNA based GPU has several Work Group Processors - a WGP has:
4 SIMD32 + VGPRs

4 Scalar ALUs + SGPRs This is where the shaders get
2 L0 Cache executed!
1 Instruction and Constant cache

SIMD32 SALU SALU SIMD32 Texture

SIMD32 SALU SALU SIMD32
Texture
VGPR 128KB SGPR IS K$ SGPR VGPR 128KB Units
32KB 16KB

VGPR 128KB SGPR SGPR VGPR 128KB Units

: GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 10

CU «= WORK GROUP PROCESSOR (WGP)

5 WGPs share a L1 cache ... more on this later ©

This is where the shaders get
executed!

SIMD32 SIMD32
Texture

VGPR 128KB VGPR 128KB Units

SIMD32 SIMD32 Texture

VGPR 128KB VGPR 128KB Units

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 11

CU «= WORK GROUP PROCESSOR (WGP)
o5 || eaure | L1s

1S VGPR VGPR VGPR VGPR cePR 64KB Units || 16KB
32KB 64KB 64KB 64KB 64KB

K$
16KB

1CUIs~Y% WGP orin
l other words ...

AL
SIher Texture LO$
Units 16KB
VGPR 128KB SGPR IS K$ SGPR VGPR 128KB LDS
32KB 16KB 128 KB
SIMD32 SALU Texture LOS$
VGPR 128KB SGPR SGPR VGPR 128KB Units 16KB

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 12

CU «= WORK GROUP PROCESSOR (WGP)

SIMD16 SIMD16 SIMD16 SIMD16 SALU
LDS Texture L1$
'$
32KB 64KB 64KB 64KB 64KB
K$ CuU
16KB

2CUis~1WGP!

SIMD32 SALU SALU SIMD32 Texture

SIMD32 SALU SALU SIMD32 Texture
Units
VGPR 128KB SGPR IS KS$ SGPR VGPR 128KB
32KB 16KB

VGPR 128KB SGPR SGPR VGPR 128KB Units

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 13

CU «= WORK GROUP PROCESSOR (WGP)

SIMD16 SIMD16 SIMD16 SIMD16 SALU
LDS Texture L1$
'$
32KB 64KB 64KB 64KB 64KB
K$ CuU
16KB I

1 WGP has the double
1 amount of SALUs and
I1$ and K$ than 2 CUs

SALU SALU SIMD32 e
VGPR 128KB SGPR IS KS SGPR VGPR 128KB Units
32KB § 16KB

SIMD32 SALU SALU SIMD32 Texture
VGPR 128KB SGPR SGPR VGPR 128KB Units

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 14

CU «= WORK GROUP PROCESSOR (WGP)

Each SIMD32 executes wavefronts of size 32 natively
Single instruction cycle

Viadd7f32 v0, v1, v2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
vimov7b32 v3, vi4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
IMD32
Units 16KB
VGPR 128KB SGPR IS K$ SGPR VGPR 128KB LDS
32KB 16KB 128 KB
Texture LOS$
VGPR 128KB SGPR SGPR VGPR 128KB Units 16KB

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 15

GCN e= RDNA

Cu CU | CU CuU Cu Cu Cu cu Cu Cu Cu cu Cu CU | CU cuU

L2 Cache, 4MB
HBM 2

Example above: Radeon™ RX Vega 64
64 CUs
Global L2 Cache
Global Memory: HBM 2

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 16

GCN e= RDNA

Example below: Radeon™RX 5700 XT
20 WGPs (~40 CUs)
1 L1 Cache per 5 WGPs
Global L2 Cache
Global Memory: GDDR 6

WGP WGP WGP WGP WGP

L1$ 128KB

L2 Cache, 4MB
GDDR 6

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 17

GCN e= RDNA

Example below: Radeon™RX 5700 XT
20 WGPs (~40 CUs) There is no equivalent to
the L1 cache on GCN.
111 Cache per 5 WGPs This is a new level of
Global L2 Cache cache!

Global Memory: GDDR 6

WGP WGP WGP WGP WGP

L1$ 128KB

L2 Cache, 4MB
GDDR 6

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 18

GCN e= RDNA

Radeon™ RX Vega 64

Cu CU | CU CuU Cu Cu Cu cu Cu Cu Cu cu Cu CU | CU cuU

L2 Cache, 4MB

Radeon™ RX 5700 XT

WGP WGP WGP WGP WGP

L1$ 128KB

L2 Cache, 4MB
GDDR 6

{_JE cPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 19

HIGHLIGHT OF CHANGES
RONA________________________|GCN

WGP CU

LO, L1, L2, L3 L1, L2, L3

Wave32 native, Wave64 via dual issue of Wave32 Wave64 (4x SIMD16)

Single cycle instruction Four cycle instruction

4 triangles/clock (after culling), >> 4 (before culling) 2-4 triangles/clock (culled/unculled)

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 20

HIGHLIGHT OF CHANGES
RONA_________________________|GCN

WGP = 2 CUs: double SALU & I$ & K$ CuU

LO, L1, L2, L3 L1, L2, L3

Wave32 native, Wave64 via dual issue of Wave32 Wave64 (4x SIMD16)

Single cycle instruction Four cycle instruction

4 triangles/clock (after culling), >> 4 (before culling) 2-4 triangles/clock (culled/unculled)

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 21

HIGHLIGHT OF CHANGES
RONA________________________|GCN

WGP CU

LO, L1, L2, L3 L1, L2, L3

Wave32 native, Wave64 via dual issue of Wave32 Wave64 (4x SIMD16)

Single cycle instruction Four cycle instruction

4 triangles/clock (after culling), >> 4 (before culling) 2-4 triangles/clock (culled/unculled)

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 22

HIGHLIGHT OF CHANGES
RONA________________________|GCN

WGP CU

LO, L1, L2, L3 L1, L2, L3

Wave32 native, Wave64 via dual issue of Wave32 Wave64 (4x SIMD16)

Single cycle instruction Four cycle instruction

4 triangles/clock (after culling), >> 4 (before culling) 2-4 triangles/clock (culled/unculled)

vedd sz vo, vy ve [L PP PP PP PP PP PP PP PP TP
ceeper- [PP PP PP PP PP PP PP
vmovoszws, e | PP PP PP PP PP TP PP PP T PPl
copper= | VPP PP PP PP PP TP PP]

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 23

HIGHLIGHT OF CHANGES
RONA________________________|GCN

WGP CU

LO, L1, L2, L3 L1, L2, L3

Wave32 native, Wave64 via dual issue of Wave32 Wave64 (4x SIMD16)

Single cycle instruction Four cycle instruction

4 triangles/clock (after culling), >> 4 (before culling) 2-4 triangles/clock (culled/unculled)

v_add f32 v0, vl, v2

v_mov_b32 v3, v4

v_add £f32 v0, vl, v2

v_mov_b32 v3, v4

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 24

HIGHLIGHT OF CHANGES
RONA________________________|GCN

WGP CU

LO, L1, L2, L3 L1, L2, L3

Wave32 native, Wave64 via dual issue of Wave32 Wave64 (4x SIMD16)

Single cycle instruction Four cycle instruction

4 triangles/clock (after culling), >> 4 (before culling) 2-4 triangles/clock (culled/unculled)

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 25

OPTIMIZATIONS

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 26

OPTIMIZATIONS

WORKLOAD
TEXTURE ACCESS DISTRIBUTION SHADER OPTIMIZATIONS

Caches Wave32 / Wave64 Wave / subgroup operations

Access Pattern

AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 27

TEXTURE ACCESS

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 28

TEXTURE ACCESS - CACHES

When loading from memory, we want as many cache hits and as few cache misses as possible ©

.

We have one more level of Cache \o/ The two LO caches on one WGP are
-> L1 Cache not coherent ®

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 29

TEXTURE ACCESS - CACHES

When loading from memory, we want as many cache hits and as few cache misses as possible ©

We have one more level of Cache \o/ The two LO caches on one WGP are
-> L1 Cache not coherent ®

SIMD32 SALU SALU SIMD32
Texture

_VGPR _ _ _VGPR Units

SIMD32 SALU SALU SIMD32
Texture
VGPR [| erm Units

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 30

TEXTURE ACCESS - CACHES

When loading from memory, we want as many cache hits and as few cache misses as possible ©

We have one more level of Cache \o/ The two LO caches on one WGP are
-> L1 Cache not coherent ®

SIMD32 SALU SALU SIMD32
Texture
LDS

XL X

SIMD32 SALU
VGPR _

SALU SIMD32

Texture
Units

LO caches not coherent on one WGP
does not affect threads within a single wavefront
can affect threads across one single thread group if thread group size > 32

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 31

TEXTURE ACCESS - CACHES

When loading from memory, we want as many cache hits and as few cache misses as possible ©

R
We have one more level of Cache \o/ The two LO caches on one WGP are
-> L1 Cache not coherent ®

L2 Cache has more clients
-> less cache flushes

Increased Cache Line Size Potentially need to adjust memory
-> 128B alignments

LO caches not coherent on one WGP
does not affect threads within a single wavefront
can affect threads across one single thread group if thread group size > 32

AMDZ

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 32

TEXTURE ACCESS

The thread indices in a compute shader are organized in a ROW_MAJOR pattern, matching a linear
texture

J\

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 33

TEXTURE ACCESS

Texture access is — however — optimized for the standard swizzle

See also Microsoft's documentation about texture layouts:
https://docs.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12 texture layout

7 S
A7 AN

——
— |

A LA LA

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 34

https://docs.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12_texture_layout

TEXTURE ACCESS

Texture access is — however — optimized for the standard swizzle

See also Microsoft's documentation about texture layouts:
https://docs.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12 texture layout

7 S
A7 AN

ZALALAL

This is the pattern in which textures are laid out - neighboring pixels are stored close together in
memory

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 35

https://docs.microsoft.com/en-us/windows/win32/api/d3d12/ne-d3d12-d3d12_texture_layout

MORTON-LIKE ORDERING

O 1 2 3
BN - -
XEE

W - = o
i o0 50 o SRR

60 61 62 63

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 36

MORTON-LIKE ORDERING

X = (((index >> 2) & 0x0007) & OxXxFFFE) | index & 0x0001

y = ((index >> 1) & 0x0003) | (((index >> 3) & 0x0007) & OxFFFC)

: GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 37

WORKLOAD DISTRIBUTION

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 38

WORKLOAD DISTRIBUTION

On RDNA, the shader can run either in Wave32 or Wave64 mode
- Not controllable within the shader — the driver chooses the mode for the shader

v_add £32 v0, vl, v2

v_mov_b32 v3, v4

vadd sz vo, vi,ve [L PP PP PP PP PP PP PP PP
copper= VPP PPl
vmovpszws, va [PP
opper— | L PP PP PP PP PP PP PP PP PP]

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 39

WORKLOAD DISTRIBUTION

On RDNA, the shader can run either in Wave32 or Wave64 mode
- Not controllable within the shader — the driver chooses the mode for the shader

?

|
But how to design our shaders now?

For Wave32 or Wave64?

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 40

WORKLOAD DISTRIBUTION

On RDNA, the shader can run either in Wave32 or Wave64 mode
- Not controllable within the shader — the driver chooses the mode for the shader

But how to design our shaders now?

For Wave32 or Waveb4?

B o vavess

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 41

WORKLOAD DISTRIBUTION

A multiple of 64 as thread group size works well for both

Waveb64
and
Wave32

This is good news for GCN cards ©

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 42

WORKLOAD DISTRIBUTION

A multiple of 64 as thread group size works well for both
Wavet64

and
Wave3?2

This is good news for GCN cards ©

That's it?

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 43

WORKLOAD DISTRIBUTION

Arrange the thread groups within the dispatch in multiples of 64
- Same as for GCN

Arrange the threads within a thread group in multiples of 32
- GCN does not care about this

- Since all 64 threads always had to run in lock step unless all threads are inactive
- Not true for RDNA ©

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 44

GCN WAVE 64

v_add £f32 v0, vl, v2

[T T T TTTTTTTITTTT]
[T T TTTTTITTTITITT T
I ~ull wavefront is executed
[TTTTTTTTITTTITITTT]
[T T T T TTTTTITTTIT]

v_mov_b32 v3, v4

v_add £f32 v0, vl, v2

' H B B B BB E BN
' H B B B BB E BN
B BN BN BN BN OB N O] Full wavefront is executed
' H B B B BB E BN
' H B B B BB E BN

v_mov_b32 v3, v4

v_add f32 v0, vl, v2

Full wavefront is executed

v_mov_b32 v3, v4

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 45

RDNA WAVE 32

Istwave32 v aa sz vo, vi, v [
vomov sz vs, v |

2nd wave32 v aaa 32 vo, vi, vz |
vomov sz vs, v |

Istwave32 voedasszvo, v v L T T B D DO DO O B B B W BN BN BN BN |
U B B B B B B BB EEEEEEDN

ZIPRIE\EZapEtE A B B B B B B B B B B DD e EEBns
S B B B B B B BB B EEEEEDN

Istwave32 v eda 2 vo, vi, v2 |
vomov sz v, v |

2ndwaved2 vesarszvo, v, v\ TTTITITT]

vmovoszws, va (PP PP PP PP TP PP PP TP PP

skipped

RDNA WAVE 64

v_add f32 v0, vl, v2

upper

v_mov_b32 v3, v4

upper

v_add £32 v0, vl, v2

upper

v_mov_b32 v3, v4

upper

[T T T T T T T I T T T I T I T T I T T T T I T I T]
[TT T T T T T T I T T I T I T TITTITITITITITITTII]
[T T T T T T T I T T I T T T I T T I T T I T I T T I]
[TT T T T T T T I T T I T I T TITTITITITITITITTII]
B Bl B BB EEEEDN
' B BB B BB EEEEEEEDN
'l B Bl B BB EEEEDN
' B B B B BB EEEEEEEEDRN
[T T T T I T T I T T I T I T I T T I T I T T I T I]

v_add £f32 v0, vl, v2 Sklpped
upper N 1 I N I I I I | el

v_mov_b32 v3, v4

upper HEEEEEEEEEEEE NSNS EEE .

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 47

CONCLUSION

Use a multiple of 64 as thread group size

Works well on RDNA both for
Wave32
Waveb4

Works well on GCN

Group your active threads within a single thread group / wavefront
Inactive groups of 32 threads can be skipped on RDNA

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 48

SHADER OPTIMIZATIONS

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 49

SHADER OPTIMIZATIONS

Loading data from global memory can be quite expensive
To share data between threads of a single thread group, we can use Local Data Share (LDS)

groupshared float datal[32];
-> Faster than global memory!

What about threads of a single wavefront?

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 50

SHADER OPTIMIZATIONS

Loading data from global memory can be quite expensive
To share data between threads of a single thread group, we can use LDS

-> Faster than global memory!

What about threads of a single wavefront?
- Make use of Data Parallel Processing (DPP) or LDS Permute

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 51

SHADER OPTIMIZATIONS

DPP and LDS Permute is nothing new on RDNA
- Works also on GCN \o/

But some specifics have changed

But first ... what are DPP and LDS Permute exactly

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 52

DATA PARALLEL PROCESSING (DPP)

GO e et
ol 1 1813111516111615/71415/213101014121315(6[4/7[3/2[7]91416/00/7

DPP can be used to exchange data between threads of a single wavefront
Thread O stores the value 1 in register vO

Thread 1 stores the value 8 in register vO

"Use DPP" so that thread O reads value 8 and thread 1 reads value 1

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 53

DATA PARALLEL PROCESSING (DPP)

GO e et
Yol 1 1813111516111615/71415/213101014121315(6/4/7[3[2[7]91416/00/7
X<
gl L

DPP can be used to exchange data between threads of a single wavefront
Thread O stores the value 1 in register vO

Thread 1 stores the value 8 in register vO

"Use DPP" so that thread O reads value 8 and thread 1 reads value 1

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 54

DATA PARALLEL PROCESSING (DPP)
d HEENESEESHEEESESEEEEEEEREE
ol 1 1813111516111615/71415/213101014121315(6[4/7[3/2[7]91416/00/7
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

There are two DPP modes available on RDNA:
DPP instructions that operate on a group of 8 threads: DPP8
Supports arbitrary swizzles

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 55

DATA PARALLEL PROCESSING (DPP)

d
ol 1 1813111516111615/71415/213101014121315(6[4/7[3/2[7]91416/00/7

Permute of four threads

Row shift left by 1-15 threads
There are two DPP modes available on RDNA: Row shift right by 1-15 threads

DPP instructions that operate on a group of 16 threads: DPP16 Row rotate right by 1-15

Supports 3 set of predefined swizzles Mirror threads within half row (8 threads)

Mirror threads within row

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 56

LDS PERMUTE
id
I
L8 3 105 6110605 (704051213000 41213 506 41713 2171014160017
1S S S 2 3 2 O

sl L

We can do data exchange using LDS permute across 32 threads

All active lanes write data to a temporary buffer

All active lanes read data from the temporary buffer
Uses LDS hardware, but does not write to LDS memory
Uses additional VGPRs

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 57

DPP & LDS PERMUTE - IMPLEMENTATION

Some general guidelines:

DPP limited to groups of 16
Prefer to shuffle only across groups of 8
Avoid shuffles across more than 32 threads

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 58

DPP & LDS PERMUTE - IMPLEMENTATION

Some general guidelines:

There is only DPP8 or DPP16

DPP limited to groups of 16

Prefer to shuffle only across groups of 8
Avoid shuffles across more than 32 threads

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 59

DPP & LDS PERMUTE - IMPLEMENTATION

Some general guidelines:

DPP8: Supports arbitrary swizzles

DPP limited to groups of 16

Prefer to shuffle only across groups of 8
Avoid shuffles across more than 32 threads

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 60

DPP & LDS PERMUTE - IMPLEMENTATION

Some general guidelines:

LDS permute limited to 32 threads
DPP limited to groups of 16

Needs to use other instructions (e.g., readFirstLane)

Prefer to shuffle only across groups of 8
Avoid shuffles across more than 32 threads

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 61

DPP & LDS PERMUTE - IMPLEMENTATION

How to use DPP and LDS Permute in our shader?
Obviously there are no low level intrinsics in HLSL/GLSL

Use wave / subgroup operations — they can get translated into dpp or lds permute instructions at the
ISA level

—> Follow previous guidelines!

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 62

DPP & LDS PERMUTE - IMPLEMENTATION

HEENESEESHEEESESEEEEEEEREE

value Hﬂﬂﬂﬂﬂﬂﬂﬂ
Eééég&lIIIIIIIIIIIIIIIIIIIIIII

HLSL, SM6.0:
value = QuadReadAcrossX (value)

GLSL, subgroup operations:
value = subgroupQuadSwapHorizontal (value)

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 63

DPP & LDS PERMUTE - IMPLEMENTATION

HEENESEESHEEESESEEEEEEEREE
value ﬂﬂﬂﬂﬂﬂﬂ

3l1i1jslielsiel | L

HLSL, SM6.0:
value = QuadReadAcrossY (value)

GLSL, subgroup operations:
value = subgroupQuadSwapVertical (value)

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 64

DPP & LDS PERMUTE - IMPLEMENTATION

HEENESEESHEEESESEEEEEEEREE
value [FENENEN 517141512131010(4/2/3[5(6[4]7[3]2]719141600]7

EEIIIIIIIIIIIIIIIIIIIIIIII

HLSL, SM6.0:
value = QuadReadAcrossDiagonal (value)

GLSL, subgroup operations:
value = subgroupQuadSwapDiagonal (value)

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 65

DPP & LDS PERMUTE - IMPLEMENTATION

float result = v;

float result += subgroupQuadSwapHorizontal(v);
float result += subgroupQuadSwapVertical(v);
float result += subgroupQuadSwapDiagonal(v);

v _add f32 dpp v26, v4, v4d quad perm:[1, 0, 3, 2] row mask:0xf bank mask:0xf bound ctrl:0
v _add f32 dpp v26, v4, v26 quad perm:[2, 3, 0, 1] row mask:0xf bank mask:0xf bound ctrl:0
v _add f32 dpp v4, v4, v26 quad perm:[3, 2, 1, 0] row mask:0xf bank mask:0xf bound ctrl:0

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 66

OPTIMIZATIONS — APPLIED

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 67

CASE STUDY: DOWNSAMPLING

All the following optimizations are showcased on
a texture downsampler for mipmap generation

A common approach to generate the mipmap levels is _

using a pixel shader, one pass per mip

Limitations and bottlenecks of a pixel shader approach:

Barriers between the mips " " ” .

Data exchange between the mips via global memory

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 68

SINGLE PASS DOWNSAMPLER (SPD)

GPUOpen's FidelityFX Single Pass Downsampler (SPD) uses a single pass compute shader to
generate all mip levels

Basic concept of SPD:
Threadgroup of 256 threads downsamples a tile of 64x64 down to 1x1

Last active threadgroup computes the remaining mips
Can downsample a texture of size 4096x4096 to 1x1

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 69

SINGLE PASS DOWNSAMPLER (SPD)

Global synchronization point
across all thread groups

SINGLE PASS DOWNSAMPLER (SPD)

Advantages:
No barriers
Data exchange between the mips via LDS or DPP except for mip 6

Can overlap work with other dispatches/draw calls due to
no barriers between the mip generation

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 71

OPTIMIZATIONS — APPLIED TO SPD

WORKLOAD
TEXTURE ACCESS DISTRIBUTION SHADER OPTIMIZATIONS

el T s Ty ST
g -~ =

How to load the source texture? How to distribute the work to the Usage of DPP
available threads?
FP16 support
How to share the data between the
threads?

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 72

TEXTURE ACCESS

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 73

TEXTURE ACCESS

A time consuming part of SPD is loading the data of the source image texture
Especially for high resolution images this is critical

For low resolution images, when the data fits in the cache, it's less sensitive to the chosen access
pattern

AMDZ

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 74

TEXTURE ACCESS e

0,0 {1,0 ﬁ;ﬂ,A—e’%’O’ 6,0 7,0
Common approach, e.g. compute shader B —
[numthreads(8,8,1)] 01|11121]31 14l 536l 171

0,212 (22 (32|42 |52 |6,2|7,2

03(13(23(33(43(53|63|7,3

041,424 (34|44 |54 |64 |74

05115253545 (55|65 |75

0,6 |16 |26 |36 |46 |56 |66 |7,6

0,7 |1,7 (2,7 |3,7 |4,7 |57 |6,7 | 7,7

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 75

TEXTURE ACCESS o|1|2|3|4|5|6|7|8|9|10]{11]|12[13|14]15

v

SPD has a thread group size of 256 00 [10 | 20 | 30 | 40 5/,0__6,9._—%6-—‘8’rg/p' 100 | 11,0 | 120 | 130 | 140 | 150
[numthreads(256,1,1)] —

0,1 11 2,1 3,1 4,1 51 6,1 7,1 8,1 9,1 10,1 1l +2t 13,1 14,1 151

0,2 1,2 2,2 SV 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,2 12,2 13,2 14,2 15,2

0,3 1,3 2,3 3,3 4,3 53 6,3 7,3 8,3 9,3 10,3 11,3 12,3 13,3 14,3 15,3

0,4 14 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4 11,4 12,4 13,4 14,4 15,4

0,5 15 2,5 BI5 4,5 S5 6,5 7,5 8,5 9,5 10,5 11,5 12,5 11815 14,5 155

0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6 8,6 9,6 10,6 11,6 12,6 13,6 14,6 15,6

0,7 1,7 2,7 &7 4,7 8,7 6,7 7,7 8,7 ©,7 10,7 11,7 12,7 13,7 14,7 15,7

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 76

TEXTURE ACCESS o|1|2|3|4|5|6|7|8|9|10]{11]|12[13|14]15

v

/
0,0 1,0 2,0 3,0 4,0 5,0 __6,9__——7—,6—‘ , 9,0 10,0 11,0 12,0 13,0 14,0 15,0
I B 50
1
—

64-127

0,1 11 2,1 3,1 4,1 51 6,1 7,1 8,1 9,1 10,1 11l =t ARCHIE 14,1 15.1

128_191 0,2 1,2 2,2 &2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,2 12,2 13,2 14,2 15,2

192-255 0,3 1,3 2,3 3,3 4,3 53 6,3 7,3 8,3 9,3 10,3 11,3 12,3 13,3 14,3 15,3
__ 0,4 14 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4 11,4 12,4 13,4 14,4 15,4

0,5 15 2,5 BI5 4,5 S5 6,5 7,5 8,5 9,5 10,5 11,5 12,5 11815 14,5 155

0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6 8,6 9,6 10,6 11,6 12,6 13,6 14,6 15,6

0,7 1,7 2,7 &7 4,7 &, 7 6,7 7,7 8,7 O 10,7 11,7 12,7 13,7 14,7 15,7

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 77

TEXTURE ACCESS

64-127

128-191
192-255

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 78

Texel index

0,0

1,0

2,0

3,0

4,0

50

32,0

33,0

34,0

35,0

36,0

37,0

TEXTURE ACCESS

Disadvantages:
We can't use quad swizzle to compute value for mip 2

Thread 0-3 are computing consecutive texels in a lane

For quad swizzle, we need thread 0-3 arranged in a quad pattern

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 79

TEXTURE ACCESS

Texel index

128 - 191

192 - 255

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 80

TEXTURE ACCESS

Advantage:
We can compute value for mip 1 and mip 2 within one thread
No inter-thread communication needed
Disadvantage:
For mip 3, we can't use quad swizzle because thread lanes are not in a quad pattern

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 81

TEXTURE ACCESS

Use a morton_”ke Ordering tO rearrange 0,0 /c: 2,0 A) 4,0 5,0 6,0 7,0 8,0 90 | 100 | 11,0 | 12,0 | 130 | 140 | 150
/ /
- - P m—

the threads In a2X2 SWIZZle 0,1 / 2,1 % 41 | 51 | 61 | 712 | 81 | 91 | 101 | 121 | 121 | 131 | 141 | 151
/ l ‘L/

Z —
0,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,2 12,2 13,2 14,2 15,2
1

0,3 1,3 2,3 3,3 4,3 53 6,3 7,3 8,3 9,3 10,3 11,3 12,3 13,3 14,3 15,3

0,4 14 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4 11,4 12,4 13,4 14,4 15,4

0,5 15 2,5 BI5 4,5 S5 6,5 7,5 8,5 9,5 10,5 11,5 12,5 11815 14,5 155

0,6 1,6 2,6 3,6 4,6 5,6 6,6 7,6 8,6 9,6 10,6 11,6 12,6 13,6 14,6 15,6

0,7 1,7 2,7 &7 4,7 &, 7 6,7 7,7 8,7 O 10,7 11,7 12,7 13,7 14,7 15,7

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 82

TEXTURE ACCESS

Texel index

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 83

TEXTURE ACCESS

Advantage:
We can compute value for mip 1 and mip 2 within one thread
No inter-thread communication needed
For mip 3, we can use quad swizzle because thread lanes are in a quad pattern

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 84

TEXTURE ACCESS

Texel index

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 85

TEXTURE ACCESS

Advantage:

For mip 2, we can use quad swizzle because thread lanes are in a quad pattern
Disadvantage:

For mip 3, we need either shuffleXor across 16 threads or LDS

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 86

PERFORMANCE COMPARISON

Performance gain from the initial approach to the last approach using a Morton-like ordering
~8%

when
Downsampling a texture of size 4096x4096
RGBA16 FLOAT
Generating 12 mips

System specs:

Radeon™ RX 5700 XT

AMD Radeon™ driver 20.1.4
Ryzen 9 3900X

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 87

TEXTURE ACCESS - CONCLUSION

Use a 2x2 thread swizzle — matches the standard texture layout
-> Morton-like ordering

Loading more neighboring texels than 2x2 in one thread does not pay off, as the single load/sample
Instructions across all threads are not fetching neighboring texels anymore

Using a 2x2 swizzle has also another advantage: quad operations become an option ©

AMDZ

GPUOpen AMD Public | Let's build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 88

WORKLOAD & DATA DISTRIBUTION

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 89

DATA EXCHANGE BETWEEN THE MIPS

After loading the data from the source image we compute mip 1

Patch for Mip 1 — 32x32

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 90

DATA EXCHANGE BETWEEN THE MIPS

How to compute mip 27?

This is a 8x8 patch, values hold by 64 consecutive threads

As outlined before, we can use quad swizzles or LDS to move the data between the threads

Let's ignore quad swizzles for now and use only LDS

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 91

DATA EXCHANGE BETWEEN THE MIPS

How to compute mip 27?

Each thread Each thread

stores 4 values loads 4 values
— —

u

Patch for Mip 2
16x16

LDS 32x32 sized array

AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 92

LDS

groupshared float4 spd 1ds[32][32];

We need to store to and load from
every entry in the LDS-array

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 93

WORK DISTRIBUTION

From mip 1 to mip 2, we need all threads:

Load (threadId.x * 2, threadId.y * 2)

Load (threadId.x * 2 + 1, threadId.y * 2)
Load (threadId.x * 2, threadId.y * 2 + 1)
Load (threadId.x * 2 + 1, threadlId.y * 2 + 1)

AMDZ

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 94

WORK DISTRIBUTION

From mip 1 to mip 2, active threads

[¥ GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 95

LDS

The result of one 2x2 tile can be stored
In entry (0,0), (1,0), (0,1) or (1,1)

We can overwrite these
entries since we just used them
to compute our result

No additional synchronization is
needed!

AMDZ

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 96

WORK DISTRIBUTION

Due to the nature of a downsampler, the further we go down the mip chain, the less threads we
need

- Which threads are we keeping active, which ones not?

For Mip 3, we only need every 4th thread

If (threadIndex % 4 == 0) {
Load (threadId.x * 2, threadId.y * 2)
Load (threadId.x * 2 + 2, threadId.y * 2)
Load (threadId.x * 2, threadId.y * 2 + 2)
Load (threadId.x * 2 + 2, threadIld.y * 2 + 2)}

AMDZ

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 97

WORK DISTRIBUTION

From mip 1 to mip 2, active threads From mip 2 to mip 3, active threads

9 17 25 65 73 81 89

11 19 27 67 75 83 91

13 21 29 69 77 85 93

5 23 31 71 79 87 95

41 49 57 97 105 113 121

43 5l 59 99 107 1Ll 123

45 58 61 101 109 117 125

47 55 63 102 103 110 111 118 119 126 127

129 137 145 153 193 201 209 217

131 139 147 55 195 203 211 219

133 141 149 157 197 205 213 221

135 143 ilsiL 159 199 207 215 223

161 169 177 185 225, 233 241 249

163 171 179 187 227 235 243 2511

165 173 181 189 229 237 245 258

166 167 174 7S 182 183 190 191 230 231 238 239 246 247 254 255

: GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 98

WORK DISTRIBUTION

89

AN

92 93

84 85
CECACEE

105 112 120 121

107 - 122 | 123

115
109 116 117 7 125

Looks a lot like our previous example ... ®

111 118 119 126 127

s sz oo, o, o T
ST B B B B B NN NN NN NN NN

SRR B B B B B N NN NN EEEEES
ST B B B B B B N NN NN NN EEN

AMDZ

GPUOpen AMD Public | Let's build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 99

WORK DISTRIBUTION

Due to the nature of a downsampler, the further we go down the mip chain, the less threads we
need

- Which threads are we keeping active, which ones not?

For Mip 3, we only need every 4th thread

If (threadIndex < 64 == 0) {
Load (threadId.x * 4, threadId.y * 4)
Load (threadId.x * 4 + 2, threadId.y * 4)
Load (threadId.x * 4, threadId.y * 4 + 2)
Load (threadId.x * 4 + 2, threadld.y * 4 + 2)}

AMDZ

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 100

WORK DISTRIBUTION

From mip 1 to mip 2, active threads From mip 2 to mip 3, active threads

64 65 72 73 80 81 88 89

66 67 74 75 82 83 90 91

68 69 76 7 84 85 92 93

70 71 78 79 86 87 94 95

96 97 104 105 112 113 120 121

98 99 106 107 114 115 122 123

100 101 108 109 116 117 124 | 125

102 103 110 111 118 119 126 127

128 129 136 137 144 145 152 153 192 193 200 | 201 | 208 | 209 | 216 | 217
130 131 138 139 146 147 154 155 194 195 202 203 | 210 | 211 | 218 | 219
132 133 140 141 148 149 156 157 196 197 204 | 205 | 212 | 213 | 220 | 221
134 135 142 143 150 151 158 159 198 199 206 | 207 214 | 215 | 222 | 223
160 161 168 169 176 177 184 185 224 | 225 232 233 | 240 | 241 | 248 | 249
162 163 170 171 178 179 186 187 226 227 234 | 235 | 242 | 243 | 250 | 251
164 165 172 173 180 181 188 189 228 229 236 | 237 244 | 245 | 252 | 253
166 167 174 175 182 183 190 191 230 231 238 | 239 | 246 | 247 | 254 | 255

: GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 101

WORK DISTRIBUTION

64 65 72 73 80 81 88 89

66 67 74 75 82 83 90 91

68 69 76 7 84 85 92 93

70 71 78 79 86 87 94 95

Downsampling 2160x3840, RGBA16 FLOAT:
~7% performance gain compared to previous

96 97 104 105 112 113 120 121

98 99 106 107 114 115 122 123

100 101 108 109 116 117 124 | 125

strategy

102 103 110 111 118 119 126 127

v_add f32 v0, vl, v2

v_mov_b32 v3, v4

vadds2vo, vipve [L PP PP PP TP PP PP PP PP PP PP]|
vwovpszws, v | PP PP PP PP PP PP PP TP PP PP

System specs:

Radeon™ RX 5700 XT

AMD Radeon™ driver 20.1.4
Ryzen 9 3900X

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 102

SHADER OPTIMIZATIONS

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 103

DATA EXCHANGE BETWEEN THE MIPS

What about using DPP / LDS to exchange data between the threads?

|dea:

Access the values of the other threads within a wavefront using using wave operations
Each wavefront downsamples a 322 patch down to 12 using ShuffleXor
- LDS is then needed to shuffle the 4 output values across the 4 threadgroups

AMDZ

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 104

DATA EXCHANGE BETWEEN THE MIPS

What about using DPP / LDS to exchange data between the threads?

|dea:

Access the values of the other threads within a wavefront using using wave operations
Each wavefront downsamples a 322 patch down to 12 using ShuffleXor
- LDS is then needed to shuffle the 4 output values across the 4 threadgroups

A Assumes a thread group size of 64

AMDZ

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 105

DATA EXCHANGE BETWEEN THE MIPS

What about using DPP / LDS to exchange data between the threads?

|dea:

Access the values of the other threads within a wavefront using using wave operations
Each wavefront downsamples a 322 patch down to 12 using ShuffleXor
- LDS is then needed to shuffle the 4 output values across the 4 threadgroups

Assumes a thread group size of 64

This is potentially not a problem!

In Vulkan®, when using subgroup operations, the wavefront size is fixed to 64
ShuffleXor IS a subgroup operation -> wavefront size is 64

AMDZ

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 106

DATA EXCHANGE BETWEEN THE MIPS

What about using DPP / LDS to exchange data between the threads?

|dea:

Access the values of the other threads within a wavefront using using wave operations
Each wavefront downsamples a 322 patch down to 12 using ShuffleXor
- LDS is then needed to shuffle the 4 output values across the 4 threadgroups

Not true for DX12!
Assumes a thread group size of 64 If we use wave
operations, it still can
o _ run either Wave32 or
This is potentially not a problem! Wave64
In Vulkan®, when using subgroup operations, the wavefront size is fixed to 64

ShuffleXor IS a subgroup operation -> wavefront size is 64

AMDZ

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 107

DATA EXCHANGE BETWEEN THE MIPS

What about using DPP / LDS to exchange data between the threads?

|dea:

Access the values of the other threads within a wavefront using using wave operations
Each wavefront downsamples a 322 patch down to 12 using ShuffleXor
- LDS is then needed to shuffle the 4 output values across the 4 threadgroups

In Vulkan®, the

Assumes a thread group size of 64 wavefront size is fixed
to 64 unless you use
. : an extension to enable
This is potentially not a problem!

variable subgroup size
In Vulkan®, when using subgroup operations, the wavefront size is fixed to 64

ShuffleXor IS a subgroup operation -> wavefront size is 64

AMDZ

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 108

QUAD SHUFFLE

Thread O can access values of threads 1, 2, and 3 via
ShuffleXor or Quad Operations

value += subgroupQuadSwapHorizontal (value) ;
value += subgroupQuadSwapVertical (value) ;
value *= 0.25;

ShuffleXor / Quad operations

« DPP limited to groups of 16 Vv

« Only shuffle across groups of 8 V/

 Avoid shuffles across more than 32 threads v/

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 109

QUAD SHUFFLE

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 110

SHUFFLEXOR

Thread O can access values of threads 4, 8, and 12 via
ShuffleXor

value += subgroupShuffleXor (value, 4);
value += subgroupShuffleXor (value, 8);
value *= 0.25;

ShuffleXor / Quad operations

« DPP limited to groups of 16 Vv

« Only shuffle across groups of 8 X

 Avoid shuffles across more than 32 threads v/

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 111

SHUFFLEXOR
N

Thread O can access values of threads 16, 32, and 48 via
ShuffleXor or Quad Operations

value += subgroupShuffleXor (value,16);
value += subgroupShuffleXor (value, 32);
value *= 0.25;

ShuffleXor / Quad operations

« DPP limited to groups of 16 X

« Only shuffle across groups of 8 X

« Avoid shuffles across more than 32 threads X

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 112

SHUFFLE ACROSS 64 THREADS

Impact varies between up to ~10% performance drop and a speed-up of about ~2%
- Not a real improvement

Another problem: Requires wavefront size of 64. Not all GPUs are running wavefront size 64.

"Good" property:
Requires less LDS

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 113

DATA EXCHANGE BETWEEN THE MIPS

What about using DPP / LDS permute to exchange data between the threads?

Use only quad reductions
-> LDS needed between each step (except mip 1 and mip 2) to group the data to a quad

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 114

QUAD SHUFFLE

Saves one round of LDS store and load completely

And this is for a time consuming mip ©

Quad Shuffle:

 DPP limited to groups of 16 VvV

« Only shuffle across groups of 8/

* Avoid shuffles across more than 32 threads «/

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 115

QUAD OPERATIONS - PERF. NUMBERS

On a Radeon™ RX 5700 XT card, for texture formats RGBA8 UNORM and RGBA16 FLOAT,
texture resolutions

1080p > ~5%
1440p > ~5%
2160p > ~1%

There is an average speed-up of ~3.5%

System specs:

Radeon™ RX 5700 XT

AMD Radeon™ driver 20.1.4
Ryzen 9 3900X

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 116

QUAD OPERATIONS - PERF. NUMBERS

On a Radeon™ RX 5700 XT card, for texture formats RGBA8 UNORM and RGBA16 FLOAT,
texture resolutions

0 Performance improvement gets lower
1080p 2 ~5% the higher the resolution gets.

1440p - ~5%
For high resolutions we are mainly
2160p 2 ~1% bandwidth bound by loading the source

texture!

There is an average speed-up of ~3.5%

System specs:

Radeon™ RX 5700 XT

AMD Radeon™ driver 20.1.4
Ryzen 9 3900X

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 117

QUAD OPERATIONS

It's very compiler dependant. But the more wave / subgroup operations we observe in the wild, the
better it gets ©

Some other nice things besides pure performance

Requires less LDS
We do not need LDS between mip 1 and mip 2 (32x32 patch to 16x16 patch)

Requires less VGPRs

- Can be important factors when overlapping SPD with other passes

GPUOpen AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 118

QUAD OPERATIONS

It's very compiler dependant. But the more wave / subgroup operations we observe in the wild, the
better it gets ©

Some other nice things besides pure performance

Requires less LDS
We do not need LDS between mip 1 and mip 2 (32x32 patch to 16x16 patch)

Requires less VGPRs | Radeon™ RX 5700 XT, Driver: 20.1.4 |Vulkan® |DX12
No subgroup operations 48 VGPRs | 45 VGPRs
Subgroup operations 40 VGPRs | 41 VGPRs

- Can be important factors when overlapping SPD with other passes

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 119

FP16

Since many textures have a format with bits per pixel (bpp) smaller or equal to 16bit, we can
consider using FP16

On RDNA,
filtering of 4-channel FP16 textures is now full-rate ©

- Writing and reading back FP16 is efficient!

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 120

FP1o6 — EXAMPLE PERF. NUMBERS

FP16 proved to be beneficial especially for small resolution textures
For high resolutions no difference could be measured

On a Radeon™ RX 5700 XT card, for texture formats RGBA8 UNORM and RGBA16 FLOAT,

texture resolutions
2562 2 ~40%
10242 - 15%
1080p = 0-2%
1440p = 0-2% System specs:

Radeon™ RX 5700 XT

AMD Radeon™ driver 20.1.4
Ryzen 9 3900X

AMD Public | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 121

FP1o6 — EXAMPLE PERF. NUMBERS

FP16 proved to be beneficial especially for small resolution textures
For high resolutions no difference could be measured

On a Radeon™ RX 5700 XT card, for texture formats RGBA8 UNORM and RGBA16 FLOAT,
texture resolutions [Performance improvement gets lower the
2562 > ~40% higher the resolution gets.

10242 5 15% For high resolutions we are mainly
1080p > 0-2% | bandwidth bound by loading the source

texture!
1440p > 0-2%

System specs:
Radeon™RX 5700 XT

AMD Radeon™ driver 20.1.4
Ryzen 9 3900X

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 122

FP1o6 — EXAMPLE PERF. NUMBERS

Same as with wave / subgroup operations, we have nice properties on top:
Requires less LDS
Requires less VGPRs — show numbers

Radeon™RX 5700 XT, Driver: 20.1.4 | Vulkan® DX12

No subgroup operations 48 VGPRs |45 VGPRs
No subgroup operations — FP16 38 VGPRs |40 VGPRs
Subgroup operations 40 VGPRs |41 VGPRs
Subgroup operations — FP16 28 VGPRs | 37 VGPRs

- Can be important factors when overlapping SPD with other passes

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 123

SUMMARY

RDNA GCN

WGP CuU

LO, L1, L2, L3 L1, L2, L3

Wave32 native, Wave64 Wave64 (4x SIMD16)
Single cycle instruction Four cycle instruction

4 triangles/clock (after culling), >> 4 (before culling) 2-4 triangles/clock (culled/unculled)

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 124

SUMMARY

Re-calculate your thread indices using a Morton-like ordering
Keep the 2x2 pattern per thread

Distribute your work to the threads so that you can skip entire waves as much as possible
Think here in terms of wavefront size 32 ©

Use subgroup operations when possible — but pay attention on your shuffle scheme
Don‘t shuffle across more than 32 threads, if possible stick to 8 threads

Consider FP16 where applicable

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 125

Q&A

lou.kramer@amd.com

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 126

AMD ¢t

GPUOpen

DISCLAIMER & ATTRIBUTION

DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is sul(ajject to change and may be rendered inaccurate for many reasons, including but
not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks
of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or
revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof
without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS I1S.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR
IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT,
INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN,
EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2020 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon™ and combinations thereof are trademarks of Advanced
Micro Devices, Inc. in the United States and/or other jurisdictions. Vulkan® is a registered trademark of the Khronos Group Inc. DirectX is a registered
trademark of Microsoft Corporation. Other names are for informational purposes only and may be trademarks of their respective owners.

GPUOpen AMD Pubilic | Let’s build... 2020 | Optimizing for the Radeon™ RDNA architecture | May 15, 2020 | 128

